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Abstract

Several simple queueing models, which are commonly used as

text book examples, have explicit steady-state solutions, which

to date have escaped notice. These solutions are easily computable.

In addition to their didactic interest, the 
results, presented

here, are also useful in the analysis of more complex queueing

models.
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1. Introduction

The queueing models M/Em/l and Em/M/c and, to a lesser

CO
extent, their bounded versions M/E/l/K+l and Em/M//K+c are

familiar topics in texts dealing with the theory of queues. The

analysis is mostly based on transform methods. Even when clearly

and succinctly presented, as e.g. in Kleinrock Eli, this analysis

involves a number of formal steps, which are difficult to the

student lacking in mathematical maturity. The same comments apply

to the discussions of the M/Hml queue and similar models, in

which the Erlang distribution is replaced by the hyperexponential

distribution. The number of journal articles, devoted to these

particular queues, is very large. A substantial number of

references may be found in [5); they will be omitted here.

The purpose of this paper is to show that, even with Em

replaced by a probability distribution of phase type (PH) 12, 3, 5],

these queues have highly tractable steady-state solutions. Except

in the case of the unbounded PH/M/c queue, these solutions are

fully explicit and require only the evaluation of one or more

readily computed matrix inverses.

We recall that a PH-distribution F () with representation

(a, T) is the distribution of the time till absorption I m

in the (m + 1) - state Markov process with generator

T Tot

0_ 0
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and initial probability vector (a, m+ ). The square matrix T

is nonsingular, has negative diagonal elements, nonnegative off-

diagonal elements and satisfies Te + To - 0. In order to avoid

trivial considerations, we shall assume that 'm+l , 0, so that

the row vector a is a probability vector. We further assume

(without loss of generality) that the matrix T + T°.a is

irreducible. The representation (a, T) is then said to be

irreducible.

The mean of F(-) is given by pi = -T-le_ The

irreducible generator T + T°.a has a unique, positive station-

ary vector w , which is given by

(1) ir_- - 1.1'_T 1

The probability distribution F(.) itself is given by

(2) F(x) 1 - a exp (Tx)e, for x a 0,

and it, as well as its density, are readily computed by the

numerical solution of the system of differential equations

v' (x) - v(x)T, for x a 0,

o(0)

(3)
P(x) - -vx),

F' (x) - v(x)TO , for x a 0.
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The familiar (generalized) Erlang and hyperexponential dis-

tributions are particular PH-distributions, respectively with

representations

-X 1 A1

A 2  A 2T- " (1, 0, ...,0),

m

with A > 0, for 1 S j s m, and

T = diag (-A, . -Xm ),- (a , V 2'

with A. 0, aj > 0, for 1 ! j < m.

The following lemmas are basic to the sequel.

Lemma 1

Let (a_, T) be an irreducible representation, then for

A > 0, then matrix AI - Ae'a - T is nonsingular.

Its inverse, which is given by

(4) (AI - Ae-o - T) 1 - (AI - T) -1 + A (AI - T) "I e-% (Al T) "I

is strictly positive. The quantity f(A) is equal to the Laplace-

Stieltjes transform f(s) - a(sI - T) T , of F(-), evaluated at

5 - A.

t
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Proof

If the matrix Al - ae.c - T were singular, there would

exist a vector u jO 0, such that

(5) uT + X(. e) a- A u 0.

If u e - 0, then the nonsingularity of XI - T implies that

u - 0. As this is a contradiction, we may normalize u by setting

u e - 1. Postmultiplying by I in (5) now yields that u To - 0,

and that u - Ac_(AI - T)-1  It follows that

uT= A a(AI - T)lTO - A f(A) - 0,

which is clearly impossible. The vector u is therefore the zero

vector and the matrix is nonsingular.

We may now write

( A - Ae-a - T)- l - (AI - T) - I  - e-a I(l - T)- l

S(Ai - T)-  + v [A e-m(I - T l-

- (Ai T) i  I + A e-a (Ai - T) "l (I - T) e

It is immediate from (2) that a_(AI - T) - 1 -f(X),

so that Formula (4) follows by elementary manipulations. By using

classical properties of differential equations, it was shown in

13] that the vectors a exp (Tx) and exp (Tx) to, are positive

i

b ' ',. .. ,

._ i " " ': 'ii "'" i
' '

...... . .
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fcr x > 0. This implies that the vectors c_(AI - T) - 1  and

(AI - T)-  T°  are positive. Since (AI - T) is nonnegative,

we conclude that the inverse in (4) is a positive matrix.

Lemma 2

The maximal eigenvalue 'n of the positive matrix

(6) R = (I -Ae.- T) "1 ,

is given by n - A(A - c*)-l, where c* is the unique real

solution of the equation

(7) X_(CI - T) -1e=.

Moreover, if -T is the abscissa of convergence of the transform

f(s), then -T < c* < A. The eigenvalue n is less than one, if

and only if A Ui < I.

Proof.

Let u be the positive left eigenvector of R, corresponding

to its Perron-Frobenius eigenvalue n and let u bo normalized

by u e - 1. The equation u R = n u, leads to

A u - A R u - A n a - n u TF and the latter equation leads, upon

postmultiplication by e, to n = At where d = u T > 0.

Upon substitution into the preceding equation for u, we

obtain u- A a I- d) I - T] I . Since u e - 1, we now readily

obtain the equation (7).

't*
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The function *(c) is strictly decreasing, positive and

convex on (-r, -) and has a pole at c = -T. It tends to zero as

c tends to infinity. The equation (7) therefore has a unique

real solution. If X < 1, then *(O) = j < 1, so that c* < 0,

and therefore 0 < n < 1. If Xv - 1, we obtain 0(0) = 1, and

hence n = 1. If A)i - 0(0) > 1, then c* is positive and

n > 1. Finally Aa_(AI - T) 1 e - 1 - f(A) < 1, so that c* < A.

2. The M/PH/Il and M/PH/l/K+l Queues

The M/PH/l queue with Poisson arrival rate A may be

studied as a Markov process with the state space

E = {O, (i, j), i > 1, 1 < j : m), where the state 0 corresponds

to the empty queue and (i, j) indicates that there are i k 1

customers present with the service in course in its phase j.

The generator Q of that Markov process is given by

0 -A Aa 0 0 .

1 TO T-XI AI 0 . . .

2 0 T -a T-AI AI . . .

(8) Q 3 0 0 T°a T-XI . . .

4 0 0 0 T° ••

in block-partitioned form. The pair (a, T) is here the irreducible

representation of the service time distribution F(.)., By i, we

__ __ ___-i
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denote the set of states {(i, j), 1 5 j 5 m}.

The stationary probability vector x of Q is partitioned

into x 0, Xl, x 2 1 .... where the vectors xi a 1 , are of

dimension m. It is explicitly given by the following theorem.

Theorem 1

Provided that P Xvi < 1, we have

x0 = 1 - , "

(9)
--= (1 p) a R, for i > 1,

where R is the matrix, defined in (6).

Proof

The equation x Q = 0, is equivalent to

-Xo 0+ l _ -0,

(10) XXo + X1 (T - Xl) + (m2 T° ) a 0

Axil + xi(T - AI) + (x+ 1 T°) a = 0, for i z 2.

Postmultiplying each equation, but the first, by e and recalling

that Te-- T, we obtain

T - Ax,



Substitution into the equation (10), we obtain that L

1 (AI - Ae.a - T) = A xa, and 2Ei+l(AI - Ae-a- T) = Ax,

for i Z 1.

It now only remains to verify that x= - p. Since the

normalizing equation reduces to

x 0 + =x 0  R e =x 0  + x0  R(I - R) - I e= x 0  (I - R) "I e=1,

we see that the queue is stable if and only if p < 1.

The preceding equation yields upon substitution for R that

x 0 Q(I - R) e= x 0  T(Xe- + T) " 1 =x 0 (I+Ae.aT) e

sinc T-1+;k~a

= + ( 1 ) AV a !IcT-]V 0 + X0 p (l-0)-1 =1

since U= - T-1 e. This completes the proof of the theorem.

Corollary 1.

The stationary queue length density at an arbitrary time is

given by

Y0 = 1 - p,

Yi = (l-p) a Ri e, for i z 1.

I .



10

This is also the stationary density of the queue length following

departures.

Proof

Only the second statement requires proof. The probability

that i customers remain following a departure is given by

T°  xi TT_°
XEi+f = - for i a 0
ZxvTO (l-p) a (I-R)- R T 0 i"

v=l

since R T = X e, and (l-p) a (I-R)- I e = 1.

Corollary 2

Given that there are i 2 1, customers in the stationary

queue at an arbitrary time t, the conditional distribution of the

residual service time is of phase type with representation (F-i T),

with 8i given by

=(a R e) a R , for i k 1.

The mean of this distribution is given by

Yi -(g R e) (a R T e), for i k 1.

As i tends to infinity, the conditional distribution of the

residual service time tends to the PH-distribution with represen-

tation (u, T), where u is the vector defined in the proof of

Lenuna 2.

k ..



The stationary distribution W(-) of the waiting time in

the stable H/PH/i queue was obtained in a particularly simple

form in [2]. It is shown there that W(*) is the PH-distribution

with representation (6, L), where

L= T + p T

The same method of proof as in Theorem 1 also leads to the

explicit solution of the bounded queue M/PH/l/K+l, in which all

customers arriving, while there are K+l customers in the system,

are lost.

Theorem 2

The stationary probability vector x - [x01 , ... , XK+l]

of the generator Q for the M/PH/l/K+1 queue is given by

x i = x 0 a R, for 1 s i K,

XK+l M a RK(-XT - I ) ,

where the matrix R is given in Formula (6) and x0  is given by

gL 'AR T-1  -~~~xo -
R
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Remarks

K

a. The sum R in the preceding formula should not be

written in closed form, since the matrix I - R may now be

singular.

b. The overflow process of an M/PH/l/K+l queue is an example

of a Markov-modulated Poisson process. It may be informally de-

scribed as a Poisson process which is turned on only when the

Markov process Q of the M/PH/l/K+l queue is in one of its

states (K + 1, j), 1 s j < m.

Further details and applications may be found in Neuts and Kumar

[4].

3. The PH/M/c/K+c Queue

We now consider a service system with c identical exponen-

tial servers, each of rate v. The arrival process is now a

renewal process of phase type, whose interarrival time distribution

F(') is of phase type with representation (a_, T). There are only

K waiting spaces; any customers arriving, while there are K + c

customers in the system, are lost.

This queueing model may be studied as a Markov process Q

on the state space E - {(i, j), 0 < i K + c, 1 s j s m). The

index i is now the number of customers in the queue and j is

the phase of the interarrival process.
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The generator Q is given by

T To 0 0 ..

UI T-uI T°-Q 0

O 2 uI T-2uI Ta ..

O 0 3VI T-3VI

cuI T-cuI T a

cUI T-culI T°

0 0 cUI T+T°.a-chI

The stationary probability vector x, partitioned into K + c + 1

m-vectors !, Xl, ... , 2EK+c, satisfies the equations

xoT + V !E = o

(XK ¢_1-i T°  -K+c (T +TO'--clI) = 0,

K+c
i  _- 1.

The same device as in Theorem 1 leads to

(12) x_ 1 T° - min(i, c) isie, for 1 5 i s K + c.
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Substitution into the equations (12), leads to

-o -J.X1T-1,

x = (i+l)UXi+l (iVI - ie.-S - T) -  for I s i S c - 1

-i cl.xi+1 (cuI - cue-a - T) - f

(K+c  T (_K+cT) a (cpI - cUe*t_-T

K+c
x~e_ =1.

We now set

A

R(i) - iu(i I - iie-j - T)-l for1s isc

and

Y = (c)-1 x 0+T°,

The following theorem then holds.

Theorem 3

The vector x is given by

^K I C-1"x Y _ a R (c) TT1 R(c.) (-u 'lT

x -1
C.^K Z C-t

S u in(c) T7 R(c-v), for 1 s i s c-1,
Vfi

^K+c-i+l
Y£-7 (C), for c s s K ¢.
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The constant Y is uniquely determined by the normalizing equation.

Remarks

The probability that i, I s i s K + c, customers are present

immediately after an arrival is given by

-i 0T

since by adding up the equations (11), we obtain

o cK+c IX,. , (_ T + !_° .) -_ s- -i.

K+c K+c

It follows that KC - , so that K xc TO .

The stationary distributions of the waiting time at arrivals

and at an arbitrary time are easily computed, once the marginal

stationary densities of the queue length at arrivals and at an

arbitrary time are known.

4. The PH//c Queue

The unbounded PH/M/c queue may be studied as a Markov

process, whose generator Q is the obvious analogue of the matrix

for the bounded case. This queueing model does not have a fully
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explicit steady-state probability vector. It is nowever a simple

example of a Markov process, which in the ergodic case has a

modified matrix-geometric stationary vector x. The vector x,

partitioned into m-vectors xi a 0, is of the form

2E-' l, • "' -1' -lR C-I2

The matrix R is now the minimal nonnegative solution to

the matrix-quadratic equation

2(13) cUR + R(T - cul) + T.ca - 0.

The matrix R has its maximal eigenvalue less than one, if and

only if cu > .-1 This is the usual equilibrium condition for

the GIM/c queue.

The vectors x0' . f x-I, satisfy the equations

(14) (xi_ ) + !E (T - iUI) + (i + 1) ixi+1 - 0, for 1 s i 9 c-2,

Qsc- 2 TO)a_ + c_1 [_- (c-l) U1 + cu R]-O,

c-2 -
;. Es + C-1 (I - R) " _ -1.

By postmultiplying by 0 in (13) and recalling that I - R

is nonsingular, we obtain

(15) c R e TO.
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By the same device as in the proof of Theorem 1, we may

transform the equations (14) for c k 2, into

E0 - EI T " ,1

- (i+l) U X_ (iul - ilie-c - T)-, for 1 s is c-2

c-I Ec-l)uI - (c-1) Ue-a - T - cUR] - 0,

c-2x-ie + c-I (I - R)- I e 1.

The penultimate equation determines the vector x up to a

multiplicative constant. It is now obvious how all the vectors

E0 " -I' may be uniquely determined.

The preceding statements all follow by applying general

theorems proved in [5]. We shall limit our discussion here to

that of some computational aspects.

The matrix R is computed by successive substitutions in

the equation

R - R2 c(clI - T) + T°.0 (clii - T) " .

It is readily seen that T - 0, implies that the J-th row of Rjo

is zero. The rows with index j such that T> 0, are strictly

positive.
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The latter observation is very useful, when m is large,

but the vector To has few positive entries. In the case of the

E/M/c queue, for example, one may readily verify that the only

non-zero row of R is the m-th row, given by

Rj- (Rml)J, for 1 j : m.

The quantity u = (Rl)m, is the unique root in (0, 1) of theml

equation

(+cu-clj S

The vectors x0, "''' -' my be computed as indicated

above. In rare cases, where this recursive method of solution

leads to overflow, the equations (16) may be solved iteratively,

using the normalizing equation to keep the successive iterates

within a compact set.

The stationary distribution W(-) of the virtual waiting

time is readily seen to be given by

c-1

(17) W (x) - - ..... [...... 7 _

- c-l s M" ZWC±-J [
= 'S (zm~t)7 [ C'rw Wzm)&
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for x k 0. It may easily be computed by numerical solving the

differential equations

v'(x) - v(x) cU(R- I),

v (0) - xc-

Similar equations may be derived for the distribution of the

waiting time at arrivals.
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